
Abstract. An explicit expression for the analytical first
derivative of the Z-averaged perturbation theory taken
to second order energy, due to Lee and Jayatilaka, is
presented for application to high-spin systems described
by a restricted open-shell Hartree–Fock wavefunction.
The use of frozen core orbitals is incorporated into the
derivation.
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1 Introduction

Open-shell perturbation theories based on the
unrestricted Hartree–Fock reference wavefunction
(unrestricted Møller–Plesset, or UMP) [1–4] frequently
suffer from poor performance and slow convergence
attributable mainly to the effects of spin contamination
[5–8]. Several solutions [9–13] based on the restricted
open-shell Hartree–Fock (ROHF) wavefunction for a
system of highest spin include measures for avoiding
spin contamination (at least at second order), while
attempting to retain the important property of size
extensivity and the relative efficiency and simplicity
characteristic of closed-shell Møller–Plesset second-
order perturbation (MP2) theory [1]. ROHF perturba-
tion theories fall into two categories, those that use a
configuration state function basis [9, 10] and those that
use a spin-orbital determinant basis [11–16]. The first
category contains the OPT1 and OPT2 methods [9]
and the method of Hubac and Cársky [10], while the
second includes the RMP [11, 12], ROMP [13], and Z-
averaged perturbation theory (ZAPT) [14–16] methods.
In a comparative study [17], OPT2 was found to per-

formwell but includes a termwhich causes the energy to be
noninvariant to rotations amongst degenerate open-shell
orbitals, and may therefore be undifferentiable in certain

situations. OPT1 yields the lowest energies but is the least
reliable method for other predictions as well as having the
least convergent series. RMP and ROMP both require
different spatial orbitals for the a and b spins, and there-
fore their computational cost at second order is about
3 times that of a comparable closed-shellMP2 calculation
and is worse at higher orders [18].
The ZAPT correlation correction, on the other

hand, is consistently the smallest in magnitude –
though this fact is strongly suggestive of good series
convergence [19]. ZAPT incurs less spin contamination
at higher orders than RMP or ROMP, requires a single
set of orbitals, and therefore performs well without
being disproportionately expensive. Moreover, the
physically appealing model of open-shell spin orbitals
that are simply averaged over the Z component of spin
forms the basis of the theory. Overall, ZAPT would
appear to be the method of choice for open-shell sys-
tems. To take full advantage of these qualities it is
desirable to have expressions for the analytical deriva-
tives of the second-order energy (ZAPT2). The deri-
vation of these derivative expressions is the subject of
this work. It should be emphasized that the present
method is not adaptable to the low-spin cases of a
system with unpaired electrons.

2 Derivation

While it is impractical to present a complete derivation of
the gradient, the purpose of this section is to provide an
outline of the main steps, while the following section
clarifies some rearrangements that have been made to
simplify the final expression. Like most post-Hartree–
Fock analyses, the ZAPT2 energy correction is expressed
in the molecular orbital (MO) basis. Here, it is customary
for i, j, k to index doubly occupied active MOs (hereafter
referred to asDOCC), a, b, c to index virtualMOs (VIRT),
w, x, y, z to index singly occupiedMOs (SOCC), p, q, r, s, t
index general MOs, and l, m, k, r index the basis set of
atom-centered orbitals (AO). In addition, m, n index
doubly occupied frozen-core MOs (CORE). Occasional-
ly, upper-case indices refer to the correspondingMOshell.
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The ZAPT2 energy correction consists of seven
terms. It is convenient to define each term as being a
sum over two-electron integrals times an ‘‘amplitude’’
factor,

Eð2Þ
ZAPT¼

X
i;j;a;b

ðiajjbÞT abij þ
X
i;j;x;a

ðixjjaÞT xaij þ1
2

X
i;j;x;y

ðixjjyÞT xyij

þ
X
i;x;a;b

ðiajxbÞT abix þ1
2

X
x;y;a;b

ðxajybÞT abxy

þ
X
i;x;y;a

ðixjyaÞT xaiy þ1
2

X
i;x;y;a

ðixjxaÞT yaiy : ð1Þ

The integrals in Eq. (1) are transformed into the MO
basis. In general,

pqjrsð Þ ¼
X

l;m;k;r

ClpCmqCkrCrs lmjkrð Þ ; ð2Þ

where Clp are the MO coefficients and the four-index
symbol, (lm|kr), denotes a regular two-electron repul-
sion integral over AOs in Mulliken notation. In
Eq. (1), the amplitudes, T qspr , have a numerator con-
taining two-electron integrals and a denominator
containing orbital energies,

T abij ¼ 2 iajjbð Þ � ibjjað Þ½ �=Dabij ;
T xaij ¼ 2 ixjjað Þ � iajjxð Þ½ �=Dxaij ;
T xyij ¼ ixjjyð Þ � iyjjxð Þ½ �=Dxyij ;
T abix ¼ 2 iajxbð Þ � ibjxað Þ½ �=Dabix ;
T abxy ¼ xajybð Þ � xbjyað Þ½ �=Dabxy ;
T xaiy ¼ ixjyað Þ=Dxaiy ;
T yaiy ¼ ðiyjyaÞ=Dai ;

ð3Þ

where

Drspq ¼ ep þ eq � e0r � e0s ; ð4Þ

and a two-index denominator is also used for clarity,

Dqp ¼
1

2
Dqqpp ¼ ep � e0q : ð5Þ

The orbital energies in Eqs. (4) and (5) are defined
using the ‘‘averaged’’ Fock operator [20, 21],

F̂F av ¼ ĥhþ
Xall
p

fp 2ĴJ � K̂K
� �

; ð6Þ

where fp is the occupation number of the pth shell.
ĥh;ĴJ ; and K̂K are the usual core-Hamiltonian, Coulomb,
and exchange operators, respectively. The summation
limit ‘‘all’’ is used to clarify a sum over CORE, DOCC,
SOCC, and VIRT indices. The matrix elements of
Eq. (6),

e~pp~qq ¼ h~pp~qq þ
Xall
r

fr 2 ~pp~qq jrrð Þ � ~pprj~qqrð Þ½ � ; ð7Þ

involve uncanonicalized orbitals (~) at convergence.
Thus, the orbital energies in Eqs. (4) and (5) have the
form

epp ¼ hpp þ
Xall
q

fq 2 ppjqqð Þ � pqjpqð Þ½ � ð8Þ

after diagonalizing the unique-shell blocks of the
matrix (Eq. 7). It is convenient to define SOCC
energies to have an additional ‘‘integral component’’
consisting of a sum of exchange integrals over the
open-shell orbitals,

ep ¼ epp �
1

2

X
y

pyjpyð Þ; for p 2 Xf g;

e0p ¼ epp þ
1

2

X
y

pyjpyð Þ; for p 2 Xf g;

e0p ¼ ep ¼ epp; for p 62 Xf g ;

ð9Þ

where {X} symbolizes the set of SOCC indices, and a
prime is used in Eqs(4), (5), and (9) to indicate the
change of sign of the exchange integral term. The label
symmetries in terms 2 and 4 of Eq. (1) can be exploited
to give

E 2ð Þ
ZAPT ¼ 1

2

X
ijab

iajjbð ÞT abij þ 1
2

X
ijxa

ixjjað ÞT xaij

þ 1
2

X
ijxa

iajjxð ÞT axij þ 1
2

X
ijxy

ixjjyð ÞT xyij

þ 1
2

X
ijab

iajjbð ÞT abij þ 1
2

X
ixab

iajxbð ÞT abix

þ 1
2

X
ixab

xajibð ÞT abxi þ 1
2

X
xyab

xajybð ÞT abxy

þ
X
ixya

ixjyað ÞT xaiy þ 1
2

X
ixya

ixjxað ÞT yaiy : ð10Þ

Equation (10) is equivalent to the sum of two ‘‘closed-
shell-type’’ terms and the two remaining terms as follows,

E 2ð Þ
ZAPT ¼ 1

2

X
i;j

Xs:v:
p;q

ipjjqð Þ Cpq ipjjqð Þ � iqjjpð Þ
� �

=Dpqij

þ 1
2

Xd:s:
p;q

X
a;b

pajqbð Þ Cpq pajqbð Þ� pbjqað Þ
� �

=Dabpq

þ
X
ixya

ixjyað ÞT xaiy þ 1
2

X
ixya

ixjxað ÞT yaiy ; ð11Þ

where

Cpq ¼ 1; for both p 2 Xf gand q 2 Xf g;
Cpq ¼ 2; otherwise :

ð12Þ

In Eq. (11), a summation range that extends over
both SOCC and VIRT indices is indicated by ‘‘s.v.’’,
likewise, one extending over DOCC and SOCC indices is
denoted ‘‘d.s.’’. Thus, in the first term of Eq. (11), SOCC
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indices appear to be included in the VIRT list, while in
the second term they appear to be in the DOCC list. The
advantage of Eq. (11) is that much of the derivative
analysis is now similar to the closed-shell case. In gen-
eral, each ZAPT2 term is differentiated with respect to a
perturbation, c,

E 2ð Þ
ZAPT

� �c
¼

X
p;q;r;s

prjqsð ÞT rspq

" #c

þ � � � : ð13Þ

As described earlier, the amplitudes (Eq. 3) involve a
numerator and a denominator factor,

T rspq ¼
Nrspq
Drspq

: ð14Þ

Since each ZAPT2 term contains at least one pair of
like summation indices the derivatives of the integral and
of the amplitude numerator are the same,

X
p;q;r;s

prjqsð ÞT rspq

" #c

¼
X
p;q;r;s

2 prjqsð Þ cð ÞT rspq �
prjqsð ÞNrspq
Drspq
� �2 Drspq

h ic2
64

3
75 : ð15Þ

Hence, each ZAPT2 term yields a ‘‘numerator’’
derivative and a ‘‘denominator’’ derivative. In the
former, the derivative of a two-electron integral is well
known,

pqjrsð Þ cð Þ ¼ pqjrsð Þcþ
X
t

U c
tp tqjrsð Þ þ

X
t

U c
tq ptjrsð Þ

þ
X
t

U c
tr pqjtsð Þ þ

X
t

U c
ts pqjrtð Þ : ð16Þ

Note that Eq. (16) involves a transformed pure
‘‘integral’’ derivative term,

pqjrsð Þc¼
X

l;m;k;r

ClpCmqCkrCrs lmjkrð Þc ; ð17Þ

and terms in which the four original MOs are replaced
by a rotation of the MOs in response to the perturba-
tion. Note that, since the U c

tp are elements of a rotation
matrix, in general,

U c
tp 6¼ U c

pt : ð18Þ
They are, however, related by the orthogonality

condition [22],

U c
pq þ U c

qp þ Sc
pq ¼ 0 ; ð19Þ

upon which much of analytical derivative theory is
based. In Eq. (19), the Sc

pq are transformed derivative
overlap integrals,

Sc
pq ¼

X
lm

ClpCmqSc
lm ; ð20Þ

by analogy with Eq. (17). When the sums over t are
subdivided into their unique shell terms, different classes

of response can be identified. Substitution of Eq. (16)
into Eq. (15) leads to terms such as

X
p;q

X
r;s

ðprjqsÞT rspq

" #c

¼
X
t;p

U c
tp

X
q;r;s

ðtrjqsÞT rspq þ � � � : ð21Þ

If t,p belong to the same shell, the U c
tp are the

so-called ‘‘non-independent’’ or ‘‘dependent-pair’’ (DP)
responses. These are rotations which do not affect the
total energy, in contrast to the ‘‘independent-pair’’ (IP)
responses in which t,p belong to different shells. At this
point, a definition for the DP responses is required.
The choice of canonicalization (Eqs. 6, 7, 8) yields a
definition of the form (see Eq. 11.39 of Ref. [20])

U c
tp ¼

Qc
tp

ep � et
� � : ð22Þ

The right-hand side of Eq. (22) has six terms,

Qc
pq¼ec

pq�Sc
pqeqþ

X6¼P
r2R

U c
rperqþU c

rqerp
� �

þ
XIP
r>s

fr�fsð ÞU c
rsGpqrs�

Xocc
r>s

frSc
rsGpqrs

�1
2

Xocc
r

frSc
rrGpqrr ; ð23Þ

where

ec
pq ¼ hc

pq þ
X
r

fr 2 pqjrrð Þc� prjqrð Þc½ � ; ð24Þ

Gpqrs ¼ 4 pqjrsð Þ � prjqsð Þ � psjqrð Þ : ð25Þ
In Eq. (24), the core-Hamiltonian derivative integral is

defined analogously to Eq. (20). In Eq. (23) the summa-
tion limit ‘‘occ’’ is used to mean CORE, DOCC, and
SOCC indices, and the IP summation spans SOCC, dou-
bly occupied (CORE andDOCC) index pairs, thenVIRT,
doubly occupied (CORE and DOCC) pairs, then the
VIRT, SOCC pairings. The summation range of the third
term of Eq. (23) spans all shells, R, that are not the DP
(P or Q) shell. Thus, Eq. (23) defines the DP responses in
terms of the IP responses. However, the orbital energy
difference in the denominator of Eq. (22) can give rise to
instabilities if near-degeneracies between orbitals occur,
and it is worthwhile to remove these wherever possible.
From Eq. (19), the substitution

U c
pp ¼ � 1

2
Sc
pp ð26Þ

is made for the diagonal orbital responses in the first
term of Eq. (21), with the off-diagonal response terms
combined as follows,

X
t>p

U c
tp

X
q;r;s

trjqsð ÞT rspq þ U
c
pt

X
q;r;s

prjqsð ÞT rstq

" #

� 1
2

X
p

Sc
pp

X
q;r;s

prjqsð ÞT rspq : ð27Þ
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Equation (19) is used again to substitute half the re-
sponses in Eq. (27) to give

¼
X
t>p

U c
tp

X
q;r;s

trjqsð ÞT rspq �
X
q;r;s

prjqsð ÞT rstq

" #

�
X
t>p

Sc
tp

X
q;r;s

prjqsð ÞT rstq � 1
2

X
p

Sc
pp

X
q;r;s

prjqsð ÞT rspq

� 1
2

X
p

Sc
pp

X
q;r;s

prjqsð ÞT rspq : ð28Þ

The second and third terms of Eq. (28) may be
combined, while the factors in brackets, involving the
difference of off-diagonal response multipliers, can be
cross-multiplied to equate their denominators,

¼
X
t>p

U c
tp

X
q;r;s

trjqsð ÞNrspq
DrspqDrstq

Drstq �
prjqsð ÞNrstq
DrspqDrstq

Drspq

" #

� 1
2

X
t;p

Sc
tp

X
q;r;s

trjqsð ÞT rspq : ð29Þ

Since the first term of Eq. (29) is symmetric in the p, q
and r, s indices, the numerators are also equal, leaving
the difference of the two ‘‘denominator’’ factors,

¼
X
t>p

U c
tp

X
q;r;s

trjqsð ÞNrspq
DrspqDrstq

Drstq � Drspq
� �

þ � � � ; ð30Þ

which is equivalent to just the difference of the two
orbital energies,

¼ �
X
t>p

U c
tp ep � et
� �X

q;r;s

trjqsð ÞNrspq
DrspqDrstq

�
X
t>p

U c
tp ep � et
� �

P 2ð Þ
tp : ð31Þ

In Eq. (31), factors multiplying the orbital
responses have been identified as elements of the
‘‘response-density’’ matrix, P(2), while those multiply-
ing overlap derivative integrals in Eq. (29) contribute
to the ‘‘energy-weighted’’ response density, W(2). The
orbital energy difference in the denominator of
Eq. (22) now cancels,X
t>p

U c
tp ep � et
� �

P 2ð Þ
tp ¼

X
t>p

Qc
tpP

2ð Þ
tp : ð32Þ

Terms similar to the right-hand side of Eq. (32), but
for which t=p, arise from the associated denominator
derivative of Eq. (15), which contains derivatives of or-
bital energies,

ec
p ¼ Qc

pp ; ð33Þ

where Qc
pp has the same form as it does in Eq. (23). In all

the ZAPT2 terms, the occurrence of eigenvalue deriva-
tives matches that of the off-diagonal response substitu-
tions so, overall, we may write

E 2ð Þ
ZAPT

� �c
¼
X
t;p

Qc
tpP

ð2Þ
tp þ � � � ð34Þ

where t,p belong to the same shell. Indeed, when the
denominator derivative lacks matching eigenvalue de-
rivatives, the corresponding orbital rotation terms can
be made to cancel. For instance, in the fourth term of
Eq. (11) open-shell DP indices occur twice in the
numerator derivative but not in the denominator
derivative. Gathering the former terms together leads
to an expression of the form

X
x;y

U c
xy

X
i;z;a

ixjyað Þ izjzað Þ=Daiþ
X
i;z;a

iyjxað Þ izjzað Þ=Dai

" #

�
X
x;y

U c
xyMxy ; ð35Þ

where the response multiplier is symmetric,

Mxy ¼ Myx : ð36Þ
Following the same approach taken in Eqs. (26), (27),

and (28), the response termX
x>y

U c
xy Mxy �Myx
� �

�
X
x>y

Sc
yxMyx �

1

2

X
x

Sc
xxMxx ð37Þ

vanishes, leaving a combined overlap-derivative term,

¼ �
X
x;y

Sc
xy

X
i;z;a

ðixjyaÞðizjzaÞ=Dai : ð38Þ

For responses involving CORE indices, the strategy
(Eqs. 26, 27, 28, 29, 30, 31) cannot be employed because
t and p cannot both be CORE indices. However, the
orbital energy difference in Eq. (22) will be perfectly
stable if the COREs and DOCCs are chosen sensibly.
Following the procedures described so far, and

gathering together like responses, the second-order
ZAPT derivative will have the intermediate form

E2ZAPT
� �c ¼XDP

p;q

U c
pq eq�ep
� �

P 2ð Þ
pq þ

XIP
p;q

U c
pq Lpq
� �

þ
XDP
p;q

Sc
pq W 2ð Þ

pq

n o
þ
XIP
p;q

Sc
pq W 2ð Þ

pq

n o

þ
X
p;q;r;s

ðpqjrsÞc CNSpqrsþ CSpqrs
n oh i

; ð39Þ

where the DP summation spans all pairs of doubly
occupied (CORE and DOCC) indices, then all SOCC
index pairs, followed by all VIRT index pairs. In the
second term of Eq. (39), the factor multiplying IP
responses, L, is identified with the so-called MP2 (or
‘‘ZAPT2’’) Lagrangian. The two-particle terms of
Eq. (39) arise when Eq. (16) is substituted into expres-
sions such as Eq. (15). The first term of Eq. (16) yields the
so-called ‘‘non-separable’’ two-particle density, GNS, by a
reordering of summations (recalling Eq. 17),

X
p;q;r;s

prjqsð ÞcT rspq¼
X

l;m;k;r

lmjkrð Þc
X
p;q;r;s

ClpCmrCkqCrsT rspq

" #

�
X

l;m;k;r

lmjkrð ÞcCNSlmkr : ð40Þ
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The so-called ‘‘separable’’ two-particle terms of
Eq. (39), GS, are described in detail later. Together, these
two terms contribute to the ZAPT2 two-particle density
matrix elements,

C 2ð Þ
pqrs ¼ CNSpqrs þ CSpqrs : ð41Þ

The curly brackets in Eq. (39) are used to indicate

incomplete quantities since further terms of the L, W(2),

and GS matrices are generated by making the substitu-
tion (Eq. 32) for the first term of Eq. (39),

E2ZAPT
� �c¼XDP

p;q

Qc
pqP

2ð Þ
pq þ � � � ; ð42Þ

leaving only the IP responses to be determined,

ðE2ZAPT
�c

¼
XDP
p;q

hc
pqP

2ð Þ
pq þ

XIP
p;q

U c
pqLpqþ

XDP
p;q

Sc
pq W 2ð Þ

pq

n o

þ
XIP
p;q

Sc
pq W 2ð Þ

pq

n o
þ
X
p;q;r;s

ðpqjrsÞc CNSpqrsþ CSpqrs
n oh i

: ð43Þ

The second term of Eq. (43) can be constructed
following solution of the coupled perturbed ROHF
equations [20],

XIP
p>q

ApqrsU c
pq ¼ Bc

rs ; ð44Þ

since the Fock matrix (Eq. 7) is symmetric at conver-
gence. In Eq. (44),

Apqrs ¼ spqrs � sqprs þ dpr npqs � fqs
� �

� dqr nqps � fps
� �

� dps npqr � fqr
� �

þ dqs nqpr � fpr
� �

ð45Þ

is often referred to as the ‘‘orbital Hessian’’, where

spqrs ¼ 2 arp � asp
� �

pqjrsð Þ þ brp � bsp
� �

½ prjqsð Þ
þ psjqrð Þ� ; ð46Þ

nrpq ¼ frhpq þ
Xocc
s

ars pqjssð Þ þ brs psjqsð Þ½ � ; ð47Þ

fpq ¼ fphpq þ
Xocc
s

aps pqjssð Þ þ bps psjqsð Þ
� �

; ð48Þ

and dpq is the regular ‘‘Kronecker delta’’,

dpq ¼ 1; for p ¼ q ;

dpq ¼ 0; for p 6¼ q ; ð49Þ
In Eqs. (46), (47), and (48), apq and bpq are, respec-

tively, the Coulomb and exchange coupling constants
in the high-spin case, with the following values when
p,q index doubly occupied (D), singly occupied (S), or
virtual (V) MOs,

apq D S V

D 2 1 0

S 1 1
2 0

V 0 0 0

bpq D S V

D �1 � 1
2 0

S � 1
2 � 1

2 0

V 0 0 0

ð50Þ

Note that, formally,

spqrs 6¼ sqprs ;

spqrs ¼ �spqsr ;

nrpq ¼ nrqp;

fpq 6¼ fqp :

The right-hand-side of Eq. (44) has five terms,

Bc
rs ¼ fc

rs � fc
sr �

1

2

Xocc
p

Sc
pps

pp
rs �

Xall
p>

Xocc
q

Sc
pqs

pq
rs

�
Xall
p>

Xocc
q

Sc
pq dpr nrqs � fqs

� �
� dps nsqr � fqr

� �h i
;

ð51Þ
where

fc
pq ¼ fphc

pq þ
Xocc
s

aps pqjssð Þcþbps psjqsð Þc
� �

: ð52Þ

Normally, it would be necessary to solve Eq. (44) for
each perturbation; however, the ‘‘Z-vector’’ substitution
[23],

XIP
p;q

U c
pqLpq ¼

XIP
p;q

Bc
pqZpq ; ð53Þ

may be applied, where Z is the solution to the linear
equation

XIP
p;q

ApqrsZpq ¼ Lrs ; ð54Þ

which is independent of the perturbation. Substituting
Eq. (53) into Eq. (43) as follows

E2ZAPT
� �c¼XDP

p;q

hc
pqP

ð2Þ
pq þ

XIP
p;q

ZpqBc
pqþ

XDP
p;q

Sc
pq W 2ð Þ

pq

n o

þ
XIP
p;q

Sc
pq W 2ð Þ

pq

n o
þ
X
p;q;r;s

pqjrsð Þc CNSpqrsþ CSpqrs
n oh i

ð55Þ
yields final terms ofW(2) and GS, and defines the IP block
of P(2), giving an expression for the derivative of the
ZAPT2 energy of the form

E2ZAPT
� �c¼X

p;q

hc
pqP

2ð Þ
pq þ

X
p;q

Sc
pqW

2ð Þ
pq þ

X
p;q;r;s

pqjrsð ÞcC 2ð Þ
pqrs :

ð56Þ
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For the derivative of the total energy (ROHF energy
plus the ZAPT2 correction), the response densities are
added to their ROHF counterparts [24],

Ppq ¼ PHFpq þ P 2ð Þ
pq ;

Wpq ¼ W HF
pq þ W 2ð Þ

pq ;

Cpqrs ¼ CHFpqrs þ C 2ð Þ
pqrs : ð57Þ

It is usually convenient to back-transform the densi-
ties (Eq. 57) so they may be combined directly with the
derivative integrals in the AO basis,

Plm ¼
X
p;q

ClpCmqPpq;

Wlm ¼
X
p;q

ClpCmqWpq;

Clmkr ¼
X
p;q;r;s

ClpCmqCkrCrsCpqrs : ð58Þ

As described earlier, all but one term of the two-
particle response density are separable in terms of
two-index quantities, so only the four-index back-
transformation (Eq. 40) is needed in Eq. (58). The
final derivative expression then has the standard form

Ec ¼
X
l;m

hc
lmPlm þ

X
l;m

Sc
lmWlm þ

X
l;m;k;r

lmjkrð ÞcClmkr :

ð59Þ
Note that, frequently, the derivative analysis leads

to the definition only of a lower- or upper-triangular
block of a given density-like matrix (Eq. 57), although
it is often convenient to symmetrize such matrices in
practice.

3 Rearrangements

Rearrangements of various terms appearing in Eqs. (9),
(23), (41), and (51) will be presented to illustrate the
derivation of the final quantities P(2), W(2), L, and GS
needed to evaluate the gradient formula (Eq. 56). We
begin with the manipulation of the six terms of Eq. (23).
The first term yields a straightforward core-Hamiltonian
derivative term and a separable two-particle density
term, to be described later, while the second term leads
to a simple overlap-derivative term. The third term is
treated as follows.

3.1 Rearrangement of DP substitution term 3

When appropriate response density factors have been
defined, the third term of Eq. (23) becomes

XDP
p;q

P 2ð Þ
pq

X6¼P
r2R

U c
rperq þ U c

rqerp
� �

; ð60Þ

which can be separated into the individual shell contri-
butions as follows,

¼
Xc:d:
i;j

P ð2Þ
ij

X
x

U c
xiexjþU

c
xjexi

� �
þ
X
a

U c
aieajþU

c
ajeai

� �" #

þ
X
x;y

P ð2Þ
xy

Xc:d:
i

U c
ixeiyþU

c
iyeix

� �
þ
X
a

U c
axeayþU c

ayeax
� �" #

þ
X
a;b

P ð2Þ
ab

Xc:d:
i

U c
iaeibþU

c
ibeia

� �
þ
X
x

U c
xaexbþU

c
xbexa

� �" #
:

ð61Þ
In eq. (61) a summation over CORE and DOCC is

indicated by ‘‘c.d.’’. By recognizing symmetries amongst
the summation indices and reordering summations,
Eq. (61) may be rearranged as follows,

¼ 2
X
x

Xc:d:
i

U c
xi

Xc:d:
j

P 2ð Þ
ij exj þ 2

X
x

Xc:d:
i

U c
ix

X
y

P 2ð Þ
xy eiy

þ 2
X
a

Xc:d:
i

U c
ai

Xc:d:
j

P 2ð Þ
ij eaj þ 2

X
a

Xc:d:
i

U c
ia

X
b

P 2ð Þ
ab eib

þ 2
X
a;x

U c
ax

X
y

P 2ð Þ
xy eay þ 2

X
a;x

U c
xa

X
b

P 2ð Þ
ab exb : ð62Þ

Equation (62) contains (IP) responses from both
above and below the diagonal of the rotation matrix.
Equation (19) can be used to remove either the upper or
lower set in Eq. (62) as follows,

¼
X
x

Xc:d:
i

U c
xi 2

Xc:d:
j

P 2ð Þ
ij exj � 2

X
y

P 2ð Þ
xy eiy

" #

þ
X
x

Xc:d:
i

Sc
xi �2

X
y

P 2ð Þ
xy eiy

" #

þ
X
a

Xc:d:
i

U c
ai 2

Xc:d:
j

P 2ð Þ
ij eaj � 2

X
b

P 2ð Þ
ab eib

" #

þ
X
a

Xc:d:
i

Sc
ai �2

X
b

P 2ð Þ
ab eib

" #

þ
X
a;x

U c
ax 2

X
y

P 2ð Þ
xy eay � 2

X
b

P 2ð Þ
ab exb

" #

þ
X
a;x

Sc
ax �2

X
b

P 2ð Þ
ab exb

" #
: ð63Þ

In so doing the size of the subsequent Z-vector
problem (Eq. 54) is minimized. Again, factors inside
brackets multiplying orbital responses contribute to the
Lagrangian, while the factors multiplying overlap-
derivative integrals become terms of the ‘‘energy-
weighted’’ response density, W(2).

3.2 Rearrangement of DP substitution term 4

The sum over IP indices in term 4 of Eq. (23) can be split
into individual shell–shell summations as follows,
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XDP
p;q

P 2ð Þ
pq

XIP
r>s

U c
rs fs � frð ÞGpqrs

¼
XDP
p;q

P 2ð Þ
pq

P
x

Pc:d:
i
U c
xi fi � fxð ÞGpqxi

þ
P
a

Pc:d:
i
U c
ai fi � fað ÞGpqai

þ
P
a;x
U c
ax fx � fað ÞGpqax

2
66666664

3
77777775

: ð64Þ

When the values of the shell occupation numbers are
accounted for the resulting expression,

¼
X
x

Xc:d:
i

U c
xi
1

2

XDP
p;q

P 2ð Þ
pq Gpqxi

" #
þ
X
a

Xc:d:
i

U c
ai

XDP
p;q

P 2ð Þ
pq Gpqai

" #

þ
X
a;x

U c
ax
1

2

XDP
p;q

P 2ð Þ
pq Gpqax

" #
; ð65Þ

yields terms of the ZAPT2 Lagrangian.

3.3 Rearrangement of DP substitution terms 5 and 6

Terms 5 and 6 of Eq. (23) yield terms ofW(2) which can
be rearranged as follows. Starting from an appropriate
definition of the DP response density,

XDP
p;q

P 2ð Þ
pq �

Xocc
r>s

Sc
rsfrGpqrs �

1

2

Xocc
r

Sc
rrfrGpqrr

" #
; ð66Þ

the sum over occupied MOs can be separated into the
individual shell summations weighted by their occupa-
tion numbers,

¼
XDP
p;q

P 2ð Þ
pq

�

�
Xc:d:
i>j

Sc
ijGpqij�

1

2

X
x

Xc:d:
i

Sc
xiGpqxi�

1

2

X
x>y

Sc
xyGpqxy

�1
2

Xc:d:
i

Sc
iiGpqii�

1

4

X
x

Sc
xxGpqxx

2
666664

3
777775 :

ð67Þ
Although the c.d. and SOCC summations (first and

third terms of Eq. 67) are asymmetric, the factors sum-
med in Eq. (67) are symmetric,

¼
XDP
p;q

P 2ð Þ
pq

�

�1
2

Xc:d:
i 6¼j
Sc
ijGpqij�

1

2

X
x

Xc:d:
i

Sc
xiGpqxi�

1

4

X
x 6¼y
Sc
xyGpqxy

�1
2

Xc:d:
i

Sc
iiGpqii�

1

4

X
x

Sc
xxGpqxx

2
666664

3
777775 ;

ð68Þ

allowing four of the terms to be combined into two,

¼
XDP
p;q

P 2ð Þ
pq

� � 1
2

Xc:d:
i;j

Sc
ijGpqij �

1

2

X
x

Xc:d:
i

Sc
xiGpqxi �

1

4

X
x;y

Sc
xyGpqxy

" #
:

ð69Þ

Finally, the order of summation may be changed to
show the contributions to W(2),

¼
Xc:d:
i;j

Sc
ij �1

2

XDP
p;q

P 2ð Þ
pq Gpqij

" #
þ
X
x

Xc:d:
i

Sc
xi �1

2

XDP
p;q

P 2ð Þ
pq Gpqxi

" #

þ
X
x;y

Sc
xy �1

4

XDP
p;q

P 2ð Þ
pq Gpqxy

" #
: ð70Þ

This completes the rearrangements of terms in the DP
substitution expression Eq. (23). The first two terms of
Eq. (51) will be described later. Terms 3 and 4 are
straightforward to rearrange as terms of W(2).

3.4 Rearrangement of IP substitution term 5

Term 5 of Eq. (51) requires a straightforward evaluation
of summation ranges and ds to rearrange the right-hand
side of Eq. (53),

XIP
r>s

Bc
rsZrs ¼ �

XIP
r>s

Zrs
Xall
p>

Xocc
q

Sc
pq � dpr nrqs � fsq

� �h

� dps nsqr � frq
� �

� þ � � � ; ð71Þ

where the p, q summation may be expanded as follows,

¼
Xc:d:
i>j

Sc
ij �

XIP
r>s

Zrs dir nrjs � fsj
� �

� dis nsjr � frj
� �n o" #

þ
X
x

Xc:d:
i

Sc
xi �

XIP
r>s

Zrs dxr nris � fsi
� �

� dxs nsir � fri
� �� �" #

þ
X
a

Xc:d:
i

Sc
ai �

XIP
r>s

Zrs dar nris � fsi
� �

� das nsir � fri
� �� �" #

þ
X
x>y

Sc
xy �

XIP
r>s

Zrs dxr nrys � fsy
� �

� dxs nsyr � fry
� �n o" #

þ
X
a;x

Sc
ax �

XIP
r>s

Zrs dar nrxs � fsx
� �

� das nsxr � frx
� �� �" #

;

ð72Þ
and the IP summation as follows,
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¼
Xc:d:
i>j

Sc
ij

X
x;k

Zxkdik nkjx�fxj
� �

þ
X
a;k

Zakdik nkja�faj
� �" #

þ
X
x

Xc:d:
i

Sc
xi �

X
y;j

Zyjdxy nyij�fji
� �

þ
X
a;y

Zaydxy nyia�faið Þ
" #

þ
X
a

Xc:d:
i

Sc
ai �

X
b;j

Zbjdab nbij�fji
� �

�
X
b;x

Zbxdab nbix�fxi
� �" #

þ
X
x>y

Sc
xy �

X
z;i

Zzidxz nzyi�fiy
� �

þ
X
a;z

Zazdxz nzya�fay
� �" #

þ
X
a;x

Sc
ax �

X
b;i

Zbidab nbxi�fix
� �

�
X
b;y

Zbydab nbxy�fyx
� �" #

;

ð73Þ

and the ds can be evaluated to give

¼
Xc:d:
i>j

Sc
ij

X
x

Zxi nijx � fxj
� �

þ
X
a

Zai nija � faj
� �" #

þ
X
x

Xc:d:
i

Sc
xi �

X
j

Zxj nxij � fji
� �

þ
X
a

Zax nxia � fai
� �" #

þ
X
a

Xc:d:
i

Sc
ai �

X
j

Zaj naij � fji
� �

�
X
x

Zax naix � fxi
� �" #

þ
X
x>y

Sc
xy �

X
i

Zxi nxyi � fiy
� �

þ
X
a

Zax nxya � fay
� �" #

þ
X
a;x

Sc
ax �

X
i

Zai naxi � fix
� �

�
X
y

Zay naxy � fyx
� �" #

:

ð74Þ

The most convenient means of handling the in-
equalities in the summations of terms 1 and 4 of Eq. (74)
is to define a modified Kronecker delta,

d0pq ¼ 1; p > q;

d0pq ¼ 0; p � q ;
ð75Þ

for use when the contribution to W(2) is defined (see
Sect. 4).

3.5 Derivative of SOCC energy integral component

The remaining rearrangements are concerned mainly
with the derivation of GS terms. It is convenient to gather
all terms involving the SOCC eigenvalue integral
component (Eq. 9) together and symmetrize the overall
term with respect to the x, y indices as follows,

1

2

X
x;y

ðxyjxyÞ cð Þvx ¼
1

4

X
x;y

ðxyjxyÞ cð Þ vx þ vy
� �

; ð76Þ

where

vx¼
X
i;j

Xs:v:
p

ðixjjpÞ½CxpðixjjpÞ�ðipjjxÞ�
�
Dxpij
� �2

þ
X
a;b

Xd:s:
p

ðxajpbÞ½CxpðxajpbÞ�ðxbjpaÞ�
�
Dabxp
� �2

þ
X
i;z

X
a

ðixjzaÞ2
�
Dxaiz
� �2þðizjxaÞ2

�
Dzaix
� �2h i

:

ð77Þ

Note that in the absence of the exchange integral
terms of Eq. (9), Eq. (77) would have the same form
(apart from two sign changes) as P 2ð Þ

xx (see Sect.4). Sub-
stituting Eq. (16) for the integral derivative in Eq. (77)
and recognizing the symmetry amongst the four SOCC
labels leads to

¼ 1

4

X
x;y

ðxyjxyÞc þ 4
X
p

U c
pxðpyjxyÞ

" #
vx þ vy
� �

: ð78Þ

The first term of Eq. (78) yields a contribution to GS
as follows,

1

4

X
x;y

xyjxyð Þc vxþvy
� �

¼ 1

4

X
l;m;k;r

ðlmjkrÞc
"X
x;y

ClxCmyCkxCry vxþvy
� �#

¼ 1

4

X
l;m;k;r

lmjkrð Þc
X
x

ClxCkxvx

 ! X
y

CmyCry

 !"

þ
X
x

ClxCkx

 ! X
y

CmyCryvy

 !#

¼
X

l;m;k;r

lmjkrð Þc 1
4
vlkP

S
mrþ

1

4
vmrP

S
lk

#
; ð79Þ

"

in which the following back-transformed densities were
used,

PHFlm ¼
Xocc
p

fpClpCmp ¼ PDlm þ P Slm ; ð80Þ

vlm ¼
X
x

ClxCmxvx : ð81Þ

In Eq. (80), the ROHF density is separated into its
doubly occupied (D) and SOCC (S) components. The
second term of Eq. (78) yields various contributions to
L and W(2), and the following terms for SOCC DP
responses,X
p;y

U c
py

X
z

ðpzjyzÞ vy þ vz
� �

¼
X
x;y

U c
xy

X
z

ðxzjyzÞ vy þ vz
� �

þ � � �

¼
X
x;y

Qc
xy

ey � ex
� �X

z

ðxzjyzÞ vy þ vz
� �

þ � � � ; ð82Þ
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where Eq. (26) is employed for the case x ¼ y. For
Eq. (82) to become singular in the case x „ y, the MOs
would need to be degenerate. However, if x, y belong to
the different irreducible representations the numerator
will vanish faster than the denominator [25]. We now
return to the DP and IP substitutions to deduce further
terms of GS.

3.6 Separable two-particle term
from the DP substitution

The first term of Eq. (23) is the integral derivative of a
Fock matrix element; the right-hand side of Eq. (40)
gives rise to a term of the form

XDP
p;q

ec
pqP

2ð Þ
pq

¼
XDP
p;q

hc
pqP

2ð Þ
pq þ

XDP
p;q

P 2ð Þ
pq

Xocc
r

fr 2 pqjrrð Þc� prjqrð Þc½ � : ð83Þ

The two-particle term of Eq. (83) can be rearranged
as follows,

X
l;m;k;r

lmjkrð Þc 2
XDP
p;q

ClpCmqP ð2Þ
pq

 ! Xocc
r

frCkrCrr

 !"

�
XDP
p;q

ClpCkqP ð2Þ
pq

 ! Xocc
r

frCmrCrr

 !#
: ð84Þ

Identifying back-transformed two-index quantities
with density matrix elements leads to

¼
X

l;m;k;r

lmjkrð Þc 2P 2ð Þ
lm P

HF
kr � P 2ð Þ

lk P
HF
mr

h i
; ð85Þ

where

P 2ð Þ
lm ¼

XDP
p;q

ClpCmqP 2ð Þ
pq : ð86Þ

In practice, Eq. (85) should reflect any four-label
symmetries that are exploited in the implementation
chosen.

3.7 Separable two-particle term from the IP substitution

The first two terms of Eq. (51) involve the general open-
shell derivative Fock matrix elements (Eq. 52), so
Eq. (53) gives rise to a term of the form

XIP
p;q

Zpq fc
pq � fc

qp

� �

¼
XIP
p;q

Zpq

fphc
pq þ

Pocc
r

apr pqjrrð Þcþbpr prjqrð Þc
� �

�fqhc
pq �

Pocc
r

aqr pqjrrð Þcþbqr prjqrð Þc
� �

0
BB@

1
CCA ;

ð87Þ

which yields one- and two-electron terms,

¼
XIP
p;q

Zpq fp� fq
� �

hc
pqþ

XIP
p;q

Zpq

�
Xocc
r

apr�aqr
� �

pqjrrð Þcþ bpr�bqr
� �

prjqrð Þc
� � !

:

ð88Þ

The one-electron term of Eq. (88) defines the IP block
of the response density,

P 2ð Þ
pq ¼ fp � fq

� �
Zpq; for p; q ¼ IP : ð89Þ

Note that care must be taken to form Eq. (89) im-
mediately prior to back-transformation (Eq. 58) and
contraction with core-Hamiltonian derivative integrals
in Eq. (59). The two-electron term of Eq. (88) may be
rearranged as follows,

X
l;m;k;r

lmjkrð Þc

XIP
p;q

ClpCmqZpq
Xocc
r

CkrCrr apr � aqr
� �

þ
XIP
p;q

ClpCkqZpq
Xocc
r

CmrCrr bpr � bqr
� �

2
666664

3
777775 :

ð90Þ

Considering, for brevity, just the Coulomb density
term in Eq. (90),

XIP
p;q

ClpCmqZpq
Xocc
r

CkrCrr apr � aqr
� �

; ð91Þ

Eq. (91) appears nonseparable unless it is subdivided
into summations over unique shells,

¼
X
x;i

ClxCmiZxi
Xc:d:
j

CkjCrj axj � aij
� �

þ
X
x;i

ClxCmiZxi
X
y

CkyCry axy � aiy
� �

þ
X
a;i

ClaCmiZai
Xc:d:
j

CkjCrj aaj � aij
� �

þ
X
a;i

ClaCmiZai
X
x

CkxCrx aax � aixð Þ

þ
X
a;x

ClaCmxZax
Xc:d:
i

CkiCri aai � axið Þ

þ
X
a;x

ClaCmxZax
X
y

CkyCry aay � axy
� �

; ð92Þ

which allows the coupling factors in brackets to be
evaluated from Eq. (50),
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¼ �
X
x;i

ClxCmiZxi

 ! Xc:d:
j

CkjCrj

 !

� 1
2

X
x;i

ClxCmiZxi

 ! X
y

CkyCry

 !

� 2
X
a;i

ClaCmiZai

 ! Xc:d:
j

CkjCrj

 !

�
X
a;i

ClaCmiZai

 ! X
x

CkxCrx

 !

�
X
a;x

ClaCmxZax

 ! Xc:d:
i

CkiCri

 !

� 1
2

X
a;x

ClaCmxZax

 ! X
y

CkyCry

 !
: ð93Þ

By defining the following back-transformed densities
over IP shells,

ZSDlm ¼
X
x;i

ClxCmiZxi:

ZVDlm ¼
X
a;i

ClaCmiZai;

ZVSlm ¼
X
a;x

ClaCmxZax ;

ð94Þ

substituting into Eq. (93), and repeating the process for
the exchange-coupling terms, the two-electron term of
Eq. (88) may be written in the following separable form
in the AO basis,

�ZSDlm P
D
kr�

1

2
ZSDlm P

S
kr�2ZVDlm P

D
kr�ZVDlm P

S
kr�ZVSlm P

D
kr

� 1

2
ZVSlm P

S
krþ

1

2
ZSDlk P

D
mrþZVDlk P

D
mr

þ 1

2
ZVDlk P

S
mrþ

1

2
ZVSlk P

D
mrþ

1

2
ZVSlk P

S
mr ; ð95Þ

which can be rearranged to give

¼� ZSDlm þ2ZVDlm þZVSlm

� �
PHFkr

þ 1

2
ZSDlk þZVDlk þ1

2
ZVSlk

 !
PHFmr þ1

2
ZVSlk �ZSDlk

� �
P Smr : ð96Þ

This contribution to the overall separable two-parti-
cle density requires three new matrices of order n2, where
n is the number of basis functions, which is principally a
storage issue since

Zlm ¼
XIP
p;q

ClpCmqZpq ¼ ZSDlm þ ZVDlm þ ZVSlm : ð97Þ

This completes the rearrangements made to simplify
the evaluation of the gradient expression (Eq. 56).

4 Gradient expression

In this section, the density-like quantities P(2), W(2), GS,
and GNS, and the Lagrangian, L, are summarized in terms
of the matrix elements of their various shell–shell blocks.
The CORE–CORE response density is null (P 2ð Þ

mn ¼ 0).

DOCC-CORE response density:

P 2ð Þ
im ¼ 1

ðei�emÞ

�

2
P
j

Ps:v:
p;q
mpjjqð Þ½Cpq ipjjqð Þ� iqjjpð Þ�=Dpqij

þ2
P
a;b

Pd:s:
p
majpbð Þ½2 iajpbð Þ� ibjpað Þ�=Dabip

þ2
P
x;y

P
a
mxjyað Þ ixjyað Þ=Dxaiy þ

P
x;y;a

mxjxað Þ iyjyað Þ=Dai

2
66666664

3
77777775
:

DOCC–DOCC response density:

P 2ð Þ
ij ¼�

X
k

Xs:v:
p;q

ipjkqð Þ½Cpq jpjkqð Þ � jqjkpð Þ�=Dpqik D
pq
jk

�
X
a;b

Xd:s:
p

iajpbð Þ½2 jajpbð Þ � jbjpað Þ�=Dabip Dabjp

�
X
x;y

X
a

ixjyað Þ jxjyað Þ=Dxaiy Dxajy

� 1
2

X
x;y;a

jxjxað Þ jyjyað Þ=Dai Daj :

SOCC–SOCC response density (see Eq. 77):

P 2ð Þ
xy ¼

X
i;j

Xs:v:
p

ixjjpð Þ Cyp iyjjpð Þ� ipjjyð Þ
� �

=Dxpij D
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ij

�
X
a;b

Xd:s:
p

xajpbð Þ Cyp yajpbð Þ� ybjpað Þ
� �

=DabxpD
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þ
X
i;z

X
a

"
ixjzað Þ iyjzað Þ=Dxaiz D
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iz

� izjxað Þ izjyað Þ=Dzaix Dzaiy

#

þð1�dxyÞ
ðey�exÞ

X
z

xzjyzð Þ vyþvz
� �

:
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VIRT–VIRT response density:

P 2ð Þ
ab ¼

X
i;j

Xs:v:
p

iajjpð Þ 2 ibjjpð Þ � ipjjbð Þ½ �=Dapij D
bp
ij

þ
X
c

Xd:s:
p;q

pajqcð Þ Cpq pbjqcð Þ � pcjqbð Þ
� �

=DacpqD
bc
pq

þ
X
x;y

X
i

ixjyað Þ ixjybð Þ=Dxaiy Dxbiy

þ 1
2

X
i;x;y

ixjxað Þ iyjybð Þ=Dai Dbi :

The IP, or off-diagonal response density, is given by
Eq. (89).

CORE–CORE energy-weighted response density:

W 2ð Þ
mn ¼ � 1

2

XDP
p;q

P 2ð Þ
pq Gpqmn �

dmn
2

XIP
p>q

Zpqsmmpq

þ d0mn

"X
x

Zxm nmnx � fxn
� �

þ
X
a

Zam nmna � fan
� �

�
XIP
p;q

Zpqsmnpq

#
:

DOCC–CORE energy-weighted response density:

W 2ð Þ
im ¼�

XDP
p;q

P 2ð Þ
pq Gpqim � P 2ð Þ

im em �
XDP
p>q

Zpqsimpq

þ
X
x

Zxi nimx � fxm
� �

þ
X
a

Zai nima � fam
� �

:

DOCC–DOCC energy-weighted response density:

W 2ð Þ
ij ¼�

X
k

Xs:v:
p;q

ipjkqð Þ Cpq jpjkqð Þ� jqjkpð Þ
� �

=Dpqjk

�
X
a;b

Xd:s:
p

iajpbð Þ 2 jajpbð Þ� jbjpað Þ½ �=Dabjp

�
X
x;y

X
a

ixjyað Þ jxjyað Þ=Dxajy �
1

2

X
x;y;a

ixjxað Þ jyjyað Þ=Daj

�1
2

XDP
p;q

P 2ð Þ
pq Gpqij�P

2ð Þ
ij ej�

dij
2

XDP
p>q

Zpqsiipq

þd0ij
X
x

Zxi nijx�fxj
� �

þ
X
a

Zai nija�faj
� �"

�
XIP
p>q

Zpqsijpq

#
:

SOCC–SOCC energy-weighted response density:

W 2ð Þ
xy ¼�

X
i;j

Xs:v:
p

ixjjpð Þ 2 iyjjpð Þ� ipjjyð Þ½ �=Dypij

�
X
a;b

Xd:s:
p

xajpbð Þ Cyp yajpbð Þ� ybjpað Þ
� �

=Dabyp

�
X
z;a

X
i

ixjzað Þ iyjzað Þ=Dyaiz þ izjxað Þ izjyað Þ=Dzaiy
h i

�1
2

X
i;z;a

ixjyað Þ izjzað Þ=Dai �
1

4

XDP
p;q

P 2ð Þ
pq Gpqxy�P 2ð Þ

xy ey

�d0xy
Xc:d:
i

Zxi nxyi�fiy
� �

�
X
a

Zax nxya�fay
� �"

þ
XIP
p>q

Zpqsxypq

#
�dxy
2

XIP
p>q

Zpqsxxpq�
dxy
2

X
z

ðxzjxzÞ½vxþvz� :

VIRT–VIRT energy-weighted response density:

W 2ð Þ
ab ¼�

X
i;j

Xs:v:
p

iajjpð Þ 2 ibjjpð Þ� ipjjbð Þ½ �=Dpbij

�
X
c

Xd:s:
p;q

pajqcð Þ Cpq pbjqcð Þ� pcjqbð Þ
� �

=Dbcpq

�
X
x;y

X
i

ixjyað Þ ixjybð Þ=Dxbiy

� 1
2

X
i;x;y

ixjxað Þ iyjybð Þ=Dbi � P
2ð Þ
ab eb :

SOCC–CORE and SOCC–DOCC energy-weighted
response density:

W 2ð Þ
xr ¼� 2

X
i;j

Xs:v:
p

irjjpð Þ½Cxp ixjjpð Þ � ipjjxð Þ�=Dxp
ij

� 2
X
a;b

Xd:s:
p

rajpbð Þ½Cxp xajpbð Þ � xbjpað Þ�=Dabxp

� 2
X
y;a

X
i

irjyað Þ ixjyað Þ=Dxaiy þ iyjrað Þ iyjxað Þ=Dyaix
h i

�
X
i;y;a

ixjrað Þ þ irjxað Þ½ � iyjyað Þ=Dai

� 1
2

XDP
p;q

P 2ð Þ
pq Gpqxr � 2

X
y

P 2ð Þ
xy eyr �

XIP
p>q

Zpqsxrpq

�
Xc:d:
i

Zxi nxri � fir
� �

þ
X
a

Zax nxra � far
� �

�
X
z

rzjxzð Þ½vx þ vz� ;

where r indexes a CORE or a DOCC MO.
VIRT–CORE, VIRT–DOCC, and VIRT–SOCC

energy-weighted response density:
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W 2ð Þ
ar ¼� 2

X
i;j

Xs:v:
p

irjjpð Þ 2 iajjpð Þ � ipjjað Þ½ �=Dapij

� 2
X
b

Xd:s:
p;q

prjqbð Þ Cpq pajqbð Þ � pbjqað Þ
� �

=Dabpq

� 2
X
x;y

X
i

ixjyrð Þ ixjyað Þ=Dxaiy

�
X
i;x;y

ixjxrð Þ iyjyað Þ=Dai � 2
X
b

P 2ð Þ
ab ebr �

XIP
p>q

Zpqsarpq

�
Xc:d:
i

Zai nari � fir
� �

�
X
x

Zax narx � fxr
� �

;

where r indexes a CORE, DOCC, or SOCC MO.
SOCC–CORE Lagrangian elements:

Lxm¼�2
X
i;j

Xs:v:
p

imjjpð Þ Cxp ixjjpð Þ� ipjjxð Þ
� �

=Dxpij

�2
X
a;b

Xd:s:
p

majpbð Þ Cxp xajpbð Þ� xbjpað Þ
� �

=Dabxp

�2
X
y;a

X
i

imjyað Þ ixjyað Þ=Dxaiy þ iyjmað Þ iyjxað Þ=Dyaix
h i

�
X
i;y;a

ixjmað Þþ imjxað Þ½ � iyjyað Þ=Dai

þ1
2

XDP
pq

P 2ð Þ
pq Gpqxmþ2

Xc:d:
i

P 2ð Þ
im exi�2

X
y

P 2ð Þ
xy eym :

VIRT–CORE Lagrangian elements:

Lam ¼� 2
X
i;j

Xs:v:
p

imjjpð Þ 2 iajjpð Þ � ipjjað Þ½ �=Dap
ij

� 2
X
b

Xd:s:
p;q

pmjqbð Þ Cpq pajqbð Þ � pbjqað Þ
� �

=Dabpq

� 2
X
x;y

X
i

ixjymð Þ ixjyað Þ=Dxaiy

�
X
i;x;y

ixjxmð Þ iyjyað Þ=Dai

þ
XDP
pq

P 2ð Þ
pq Gpqam þ 2

Xc:d:
i

P 2ð Þ
im eai � 2

X
b

P 2ð Þ
ab ebm :

SOCC–DOCC Lagrangian elements:

Lxi ¼ 2
X
j

Xs:v:
p;q

xpjjqð Þ Cpq ipjjqð Þ � iqjjpð Þ
� �

=Dpq
ij

� 2
X
j;k

Xs:v:
p

ikjjpð Þ Cxp kxjjpð Þ � kpjjxð Þ
� �

=Dxp
jk

þ 2
X
a;b

Xd:s:
p

xajpbð Þ 2 iajpbð Þ � ibjpað Þ½ �=Dabip

� 2
X
a;b

Xd:s:
p

iajpbð Þ Cxp xajpbð Þ � xbjpað Þ
� �

=Dabxp

þ 2
X
y;z

X
a

xyjzað Þ iyjzað Þ=Dya
iz

� 2
X
y;a

X
j

ijjyað Þ jxjyað Þ=Dxa
jy þ jyjiað Þ jyjxað Þ=Dya

jx

h i

�
X
j;y;a

jxjiað Þ þ ijjxað Þ½ � jyjyað Þ=Daj

þ
X
y;z;a

xyjyað Þ izjzað Þ=Dai

�
X
z

izjxzð Þ vx þ vz½ � þ 1
2

XDP
pq

P 2ð Þ
pq Gpqxi

þ 2
Xc:d:
j

P 2ð Þ
ij exj � 2

X
y

P 2ð Þ
xy eyi :

VIRT–DOCC Lagrangian elements:

Lai¼ 2
X
j

Xs:v:
p;q

pajjqð Þ Cpq ipjjqð Þ� iqjjpð Þ
� �

=Dpqij

�2
X
j;k

Xs:v:
p

ikjjpð Þ 2 kajjpð Þ� kpjjað Þ½ �=Dapjk

þ2
X
b;c

Xd:s:
p

abjpcð Þ 2 ibjpcð Þ� icjpbð Þ½ �=Dbcip

�2
X
b

Xd:s:
p;q

ipjqbð Þ Cpq pajqbð Þ� pbjqað Þ
� �

=Dabpq

þ2
X
x;y

X
b

xajybð Þ ixjybð Þ=Dxbiy

�2
X
x;y

X
j

iyjjxð Þ jxjyað Þ=Dxajy

þ
X
x;y;b

xajxbð Þ iyjybð Þ=Dbi �
X
j;x;y

ixjjxð Þ jyjyað Þ=Daj

þ
XDP
pq

P 2ð Þ
pq Gpqaiþ2

Xc:d:
j

P 2ð Þ
ij eaj�2

X
b

P 2ð Þ
ab ebi :

VIRT–SOCC Lagrangian elements:

Lax ¼ 2
X
i;j

Xs:v:
p

iajjpð Þ Cxp ixjjpð Þ � ipjjxð Þ
� �

=Dxp
ij

� 2
X
i;j

Xs:v:
p

ixjjpð Þ 2 iajjpð Þ � ipjjað Þ½ �=Dapij

þ 2
X
b;c

Xd:s:
p

abjpcð Þ Cxp xbjpcð Þ � xcjpbð Þ
� �

=Dbcxp

� 2
X
b

Xd:s:
p;q

xpjqbð Þ Cpq pajqbð Þ � pbjqað Þ
� �

=Dabpq
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þ 2
X
i;y

X
b

iajybð Þ ixjybð Þ=Dxb
iy þ iyjabð Þ iyjxbð Þ=Dyb

ix

h i

� 2
X
y;z

X
i

izjxyð Þ izjyað Þ=Dza
iy

þ
X
i;y;b

ixjabð Þ þ iajxbð Þ½ � iyjybð Þ=Dbi

�
X
i;y;z

iyjxyð Þ izjzað Þ=Dai

þ 1
2

XDP
pq

P 2ð Þ
pq Gpqax þ 2

X
y

P 2ð Þ
xy eay

� 2
X
b

P 2ð Þ
ab ebx �

X
y

xyjyað Þ vx þ vy
� �

:

Separable two-particle density:

CSlmkr ¼ 2P 2ð Þ
lm P

HF
kr � P 2ð Þ

lk P
HF
mr þ 1

4vlkP
S
mr

þ 1
4 vmrP

S
lk þ 1

2 ZVSlk � ZSDlk

� �
P Smr

� ZSDlm þ 2ZVDlm þ ZVSlm

� �
PHFkr

þ 1
2Z

SD
lk þ ZVDlk þ 1

2 Z
VS
lk

� �
PHFmr :

Nonseparable two-particle density:

CNSlmkr ¼
Xd:s:
p;q

Xs:v:
r;s

ClpCmqCkrCrsT rspq ;

where

T abij ¼ 2 2ðiajjbÞ � ðibjjaÞ½ �=Dabij ;

T axij ¼ 2 iajjxð Þ� ixjjað Þ½ �=Daxij ;
T xaij ¼ 2 ixjjað Þ� iajjxð Þ½ �=Dxaij ;

T xyij ¼ ixjjyð Þ � iyjjxð Þ½ �=Dxy
ij ;

T xaiy ¼ 2 ixjyað Þ=Dxa
iy þ ixjxað Þ iyjyað Þ=Dai ;

T abix ¼ 2 iajxbð Þ� ibjxað Þ½ �=Dabix ;
T abxi ¼ 2 xajibð Þ� xbjiað Þ½ �=Dabxi ;

T abxy ¼ xajybð Þ � xbjyað Þ½ �=Dabxy ;

T yzix ¼ T yzxi ¼ T zaxy ¼ T azxy ¼ T yzwx ¼ 0 :

5 Conclusion

While second-order UMP theory admits a relatively
simple explicit derivative expression [26, 27], the situa-
tion for RMP [28–30], ROMP, OPT1, OPT2, and ZAPT
is evidently more complex. These gradients give rise to a
number of issues not found in the closed-shell MP2 case.
Firstly, the energy expressions contain several terms.
One may attempt to take the derivative of each term
separately then combine the results; however, this would

be a tedious exercise and is likely to produce many more
terms than necessary. Secondly, the DP and IP responses
have quite different forms for their substitutions (com-
paring Eqs. 23 and 51, their counterparts in the closed-
shell case differ by only one term [31]). Of course, there
are also four classes of MO to consider if frozen cores
are included.
However, it has been shown that when these factors

are taken into account the results are quite tractable.
Indeed, though the gradient expression given in this
work involves many more terms than its closed-shell
counterpart, the new terms are all associated with sum-
mations over SOCC indices, which are likely to be short.
It is not expected, therefore, that the evaluation of the
ZAPT2 gradient will be significantly more expensive
than comparable closed-shell MP2 calculations.
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