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Abstract. An explicit expression for the analytical first
derivative of the Z-averaged perturbation theory taken
to second order energy, due to Lee and Jayatilaka, is
presented for application to high-spin systems described
by a restricted open-shell Hartree-Fock wavefunction.
The use of frozen core orbitals is incorporated into the
derivation.
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1 Introduction

Open-shell perturbation theories based on the
unrestricted Hartree—-Fock reference wavefunction
(unrestricted Moller—Plesset, or UMP) [1-4] frequently
suffer from poor performance and slow convergence
attributable mainly to the effects of spin contamination
[5-8]. Several solutions [9-13] based on the restricted
open-shell Hartree-Fock (ROHF) wavefunction for a
system of highest spin include measures for avoiding
spin contamination (at least at second order), while
attempting to retain the important property of size
extensivity and the relative efficiency and simplicity
characteristic of closed-shell Mpgller—Plesset second-
order perturbation (MP2) theory [1]. ROHF perturba-
tion theories fall into two categories, those that use a
configuration state function basis [9, 10] and those that
use a spin-orbital determinant basis [11-16]. The first
category contains the OPT1 and OPT2 methods [9]
and the method of Hubac and Carsky [10], while the
second includes the RMP [11, 12], ROMP [13], and Z-
averaged perturbation theory (ZAPT) [14-16] methods.

In a comparative study [17], OPT2 was found to per-
form well but includes a term which causes the energy to be
noninvariant to rotations amongst degenerate open-shell
orbitals, and may therefore be undifferentiable in certain

Correspondence to: G. D. Fletcher

situations. OPT1 yields the lowest energies but is the least
reliable method for other predictions as well as having the
least convergent series. RMP and ROMP both require
different spatial orbitals for the « and f spins, and there-
fore their computational cost at second order is about
3 times that of a comparable closed-shell MP2 calculation
and is worse at higher orders [18].

The ZAPT correlation correction, on the other
hand, is consistently the smallest in magnitude —
though this fact is strongly suggestive of good series
convergence [19]. ZAPT incurs less spin contamination
at higher orders than RMP or ROMP, requires a single
set of orbitals, and therefore performs well without
being disproportionately expensive. Moreover, the
physically appealing model of open-shell spin orbitals
that are simply averaged over the Z component of spin
forms the basis of the theory. Overall, ZAPT would
appear to be the method of choice for open-shell sys-
tems. To take full advantage of these qualities it is
desirable to have expressions for the analytical deriva-
tives of the second-order energy (ZAPT2). The deri-
vation of these derivative expressions is the subject of
this work. It should be emphasized that the present
method is not adaptable to the low-spin cases of a
system with unpaired electrons.

2 Derivation

While it is impractical to present a complete derivation of
the gradient, the purpose of this section is to provide an
outline of the main steps, while the following section
clarifies some rearrangements that have been made to
simplify the final expression. Like most post-Hartree—
Fock analyses, the ZAPT2 energy correction is expressed
in the molecular orbital (MO) basis. Here, it is customary
for i, j, k to index doubly occupied active MOs (hereafter
referred to as DOCCQC), a, b, ¢ to index virtual MOs (VIRT),
w, X, y, z to index singly occupied MOs (SOCC), p, ¢, 1, 5, t
index general MOs, and u, v, 4, ¢ index the basis set of
atom-centered orbitals (AO). In addition, m, n index
doubly occupied frozen-core MOs (CORE). Occasional-
ly, upper-case indices refer to the corresponding MO shell.
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The ZAPT2 energy correction consists of seven
terms. It is convenient to define each term as being a
sum over two-electron integrals times an “‘amplitude”
factor,
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The integrals in Eq. (1) are transformed into the MO
basis. In general,

(pglrs) = Z CupCigCirCos(pv|20) (2)

UV, 4,0

where C,, are the MO coefficients and the four-index
symbol, (uv|Ac), denotes a regular two-electron repul-
sion integral over AQOs in Mulliken notation. In
Eq. (1), the amplitudes, v, have a numerator con-
taining two-electron mtegrals and a denominator
containing orbital energies,

T”b [2(ialjb) — lb|]a)]/DU )
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DB =gty — i~ (4)

and a two-index denominator is also used for clarity,
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The orbital energies in Eqgs. (4) and (5) are defined
using the “averaged” Fock operator [20, 21],
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p

where f,, is the occupation number of the pth shell.
h,J,and K are the usual core-Hamiltonian, Coulomb,
and exchange operators, respectively. The summation
limit ““all” is used to clarify a sum over CORE, DOCC,
SOCC, and VIRT indices. The matrix elements of

Eq. (6),
all
&5 = hsg + > [2(Balrr) — (prigr)] (7)

involve uncanonicalized orbitals (~) at convergence.
Thus, the orbital energies in Egs. (4) and (5) have the
form
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q

after diagonalizing the unique-shell blocks of the
matrix (Eq. 7). It is convenient to define SOCC
energies to have an additional ‘“‘integral component”
consisting of a sum of exchange integrals over the
open-shell orbitals,
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where {X} symbolizes the set of SOCC indices, and a
prime is used in Eqgs(4), (5), and (9) to indicate the
change of sign of the exchange integral term. The label
symmetries in terms 2 and 4 of Eq. (1) can be exploited
to give
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Equation (10) is equivalent to the sum of two ““closed-
shell-type” terms and the two remaining terms as follows,
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where
Cp =1, forboth pe {X}and g € {X}, (12)
Cpy =2, otherwise .

In Eq. (11), a summation range that extends over
both SOCC and VIRT indices is indicated by “‘s.v.”,
likewise, one extending over DOCC and SOCC indices is
denoted ““d.s.”. Thus, in the first term of Eq. (11), SOCC



indices appear to be included in the VIRT list, while in
the second term they appear to be in the DOCC list. The
advantage of Eq. (11) is that much of the derivative
analysis is now similar to the closed-shell case. In gen-
eral, each ZAPT2 term is differentiated with respect to a
perturbation, 7,

(Eder) =

As described earlier, the amplitudes (Eq. 3) involve a
numerator and a denominator factor,
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Since each ZAPT2 term contains at least one pair of
like summation indices the derivatives of the integral and
of the amplitude numerator are the same,
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Hence, each ZAPT2 term yields a ‘“numerator”
derivative and a ‘“denominator” derivative. In the

former, the derivative of a two-electron integral is well
known,
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Note that Eq. (16) involves a transformed pure
“integral” derivative term,
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and terms in which the four original MOs are replaced
by a rotation of the MOs in response to the perturba-
tion. Note that, since the U;fy are elements of a rotation
matrix, in general,

U, # Ujy - (18)

They are, however,
condition [22],

Y Y Y —
qu+ qu+Spq =0,

related by the orthogonality

(19)

upon which much of analytical derivative theory is
based. In Eq. (19), the S are transformed derivative
overlap integrals,

Sy = E CwCigS)y

w

(20)

by analogy with Eq. (17). When the sums over ¢ are
subdivided into their unique shell terms, different classes

59

of response can be identified. Substitution of Eq. (16)
into Eq. (15) leads to terms such as

[ZZWW@XZ

pg s
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If ¢p belong to the same shell, the U,";, are the
so-called “‘non-independent” or ‘“‘dependent-pair’” (DP)
responses. These are rotations which do not affect the
total energy, in contrast to the “independent-pair” (IP)
responses in which z,p belong to different shells. At this
point, a definition for the DP responses is required.
The choice of canonicalization (Egs. 6, 7, 8) yields a
definition of the form (see Eq. 11.39 of Ref. [20])
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The right-hand side of Eq. (22) has six terms,
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In Eq. (24), the core-Hamiltonian derivative integral is
defined analogously to Eq. (20). In Eq. (23) the summa-
tion limit “occ” is used to mean CORE, DOCC, and
SOCC indices, and the IP summation spans SOCC, dou-
bly occupied (CORE and DOCC) index pairs, then VIRT,
doubly occupied (CORE and DOCC) pairs, then the
VIRT, SOCC pairings. The summation range of the third
term of Eq. (23) spans all shells, R, that are not the DP
(P or Q) shell. Thus, Eq. (23) defines the DP responses in
terms of the IP responses. However, the orbital energy
difference in the denominator of Eq. (22) can give rise to
instabilities if near-degeneracies between orbitals occur,
and it is worthwhile to remove these wherever possible.
From Eq. (19), the substitution

1
Uy = _ESz'w

(26)

is made for the diagonal orbital responses in the first
term of Eq. (21), with the off-diagonal response terms
combined as follows,
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Equation (19) is used again to substitute half the re-
sponses in Eq. (27) to give

= Z U, Z (trlgs)T, Z (prlgs)Ty;
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The second and third terms of Eq. (28) may be
combined, while the factors in brackets, involving the
difference of off-diagonal response multipliers, can be
cross-multiplied to equate their denominators,
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Since the first term of Eq. (29) is symmetric in the p, ¢
and r, s indices, the numerators are also equal, leaving
the difference of the two “denominator’ factors,

tr|qS Nré 7S S
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which is equivalent to just the difference of the two
orbital energies,

(tr|gs)N™
== Z U* 6t) Z Drs Drqu

t>p q,r,s pg1q
Y 2
=" Up(ep —a)By) 31)
t>p
In Eq. (31), factors multiplying the orbital

responses have been 1dent1ﬁed as elements of the
“response-density” matrix, P®, while those multiply-
ing overlap derivative mtegrals in Eq. (29) contrlbute
to the “‘energy-weighted” response density, W®. The
orbital energy difference in the denomlnator of
Eq. (22) now cancels,

> Unlep—a)Py’ = > 0Py
t>p t>p

Terms similar to the right-hand side of Eq. (32), but
for which r=p, arise from the associated denominator
derivative of Eq. (15), which contains derivatives of or-
bital energies,

(32)
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where 0, has the same form as it does in Eq. (23). In all
the ZAPT2 terms, the occurrence of eigenvalue deriva-

tives matches that of the off-diagonal response substitu-
tions so, overall, we may write

( ZAPT) ZQtp 1

(34)

where ¢,p belong to the same shell. Indeed, when the
denominator derivative lacks matching eigenvalue de-
rivatives, the corresponding orbital rotation terms can
be made to cancel. For instance, in the fourth term of
Eq. (11) open-shell DP indices occur twice in the
numerator derivative but not in the denominator
derivative. Gathering the former terms together leads
to an expression of the form
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where the response multiplier is symmetric,
My, = M, .
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Following the same approach taken in Egs. (26), (27),
and (28), the response term
1 .
—5D_SiMe
X

> Ui (My = M) = 3 SiM
vanishes, leaving a combined overlap-derivative term,

x>y x>y
= Z Z (ix|ya)(iz|za) /D¢ . (38)

lZd

(37)

For responses involving CORE indices, the strategy
(Egs. 26, 27, 28, 29, 30, 31) cannot be employed because
t and p cannot both be CORE indices. However, the
orbital energy difference in Eq. (22) will be perfectly
stable if the COREs and DOCCs are chosen sensibly.

Following the procedures described so far, and
gathering together like responses, the second-order
ZAPT derivative will have the intermediate form

1P
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where the DP summation spans all pairs of doubly
occupied (CORE and DOCC) indices, then all SOCC
index pairs, followed by all VIRT index pairs. In the
second term of Eq. (39), the factor multiplying IP
responses, L, is identified with the so-called MP2 (or
“ZAPT2”) Lagrangian. The two-particle terms of
Eq. (39) arise when Eq. (16) is substituted into expres-
sions such as Eq. (15). The first term of Eq. (16) y1elds the
so-called “non-separable’ two-particle density, I™°, by a
reordering of summations (recalling Eq. 17),

S (prlas) ' TE= ST (wl2o) L CypCuCiqCosTrs
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The so- called “separable” two-particle terms of
Eq. (39), I'S, are described in detail later. Together, these
two terms contrlbute to the ZAPT2 two-particle density
matrix elements,

(2) _ NS S
rql‘? rqlv+rqrv *

(41)

The curly brackets in Eq. (39) are used to indicate
incomplete quantities since further terms of the L, W®,
and TS matrices are generated by making the substitu-
tion (Eq. 32) for the first term of Eq. (39),

ZQM T
leaving only the IP responses to be determined,
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The second term of Eq. (43) can be constructed
following solution of the coupled perturbed ROHF
equations [20],

E :AP‘I”S rs ’
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since the Fock matrix (Eq. 7) is symmetric at conver-
gence. In Eq. (44),
qurs ‘qu — ‘L'qp + 5 (éqy - Cqs) - 5qr (ézg - éps)
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is often referred to as the “‘orbital Hessian”, where
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and 6y is the regular “Kronecker delta”,

Opg =1, forp=gq,
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In Eqs. (46), (47), and (48), apq and By are, respec-
tively, the Coulomb and exchange coupling constants
in the high-spin case, with the following values when
p,q index doubly occupied (D), singly occupied (S), or
virtual (V) MOs,
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The right-hand-side of Eq. (44) has five terms,
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Normally, it would be necessary to solve Eq. (44) for
each perturbation; however, the “Z-vector” substitution
(23],
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may be applied, where Z is the solution to the linear
equation

(53)
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which is independent of the perturbation. Substituting
Eq. (53) into Eq. (43) as follows

DP
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y1elds ﬁnal terms of W® and I'S, and defines the IP block
of P®, giving an expression for the derivative of the
ZAPT2 energy of the form

Z Pq Pq Z Prq P‘I + Z (pq‘l"S /r
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For the derivative of the total energy (ROHF energy
plus the ZAPT2 correction), the response densities are
added to their ROHF counterparts [24],

Fpq :Pplsz +P1§§)’
Wy = VVpl[_]lF + w2

pq
rpqrs = rlqul;s + Fg(f{)rs : (57)

It is usually convenient to back-transform the densi-
ties (Eq. 57) so they may be combined directly with the
derivative integrals in the AO basis,

Py = Z Cupcvqp JZR

P4
W,w = Z CupCVq W;vq ’
pYq
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As described earlier, all but one term of the two-
particle response density are separable in terms of
two-index quantities, so only the four-index back-
transformation (Eq. 40) is needed in Eq. (58). The
final derivative expression then has the standard form

E = Z R Py + ZSZVW,N + Z () 26)' T s
L

Y wy,Ac
(59)

Note that, frequently, the derivative analysis leads
to the definition only of a lower- or upper-triangular
block of a given density-like matrix (Eq. 57), although
it is often convenient to symmetrize such matrices in
practice.

3 Rearrangements

Rearrangements of various terms appearing in Egs. (9),
(23), (41), and (51) will be presented to illustrate the
derivation of the final quantities P®, W, L, and TS
needed to evaluate the gradient formula (Eq. 56). We
begin with the manipulation of the six terms of Eq. (23).
The first term yields a straightforward core-Hamiltonian
derivative term and a separable two-particle density
term, to be described later, while the second term leads
to a simple overlap-derivative term. The third term is
treated as follows.

3.1 Rearrangement of DP substitution term 3

When appropriate response density factors have been
defined, the third term of Eq. (23) becomes

DP #P

2 y
DR D (Ut + Ul (60)
2 reR

which can be separated into the individual shell contri-
butions as follows,
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In eq. (61) a summation over CORE and DOCC is
indicated by “‘c.d.”. By recognizing symmetries amongst
the summation indices and reordering summations,
Eq. (61) may be rearranged as follows,
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Equation (62) contains (IP) responses from both
above and below the diagonal of the rotation matrix.
Equation (19) can be used to remove either the upper or
lower set in Eq. (62) as follows,

.d. .d.
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X i J y
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In so doing the size of the subsequent Z-vector
problem (Eq. 54) is minimized. Again, factors inside
brackets multiplying orbital responses contribute to the
Lagrangian, while the factors multiplying overlap-
derivative integrals become terms of the ‘‘energy-
weighted” response density, W®

(62)

(63)

3.2 Rearrangement of DP substitution term 4

The sum over IP indices in term 4 of Eq. (23) can be split
into individual shell-shell summations as follows,
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When the values of the shell occupation numbers are
accounted for the resulting expression,

c.d.
=> D U Z 7 G +ZZ ZP
+) UL Z %) Ggax | (65)

yields terms of the ZAPT2 Lagrangian.

3.3 Rearrangement of DP substitution terms 5 and 6

Terms 5 and 6 of Eq. (23) yield terms of W® which can
be rearranged as follows. Starting from an appropriate
definition of the DP response density,

occ occ

DP
DB | = D St G = Z
P

r>s

(66)

qrr b

the sum over occupied MOs can be separated into the
individual shell summations weighted by their occupa-
tion numbers,

DP
_ Z 20
o Pq
ZSV Gpgij — 222 Gpgri — ZSV Gpgoy
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__E , pqu E , pqx’r

(67)

Although the c.d. and SOCC summations (first and
third terms of Eq. 67) are asymmetric, the factors sum-
med in Eq. (67) are symmetric,
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allowing four of the terms to be combined into two,

[z 222 i 4 255G

(69)

Finally, the order of summat10n may be changed to
show the contributions to W

c.d. ) 1 DP
DI LMD ) 321 55 o AL
2y PYq

1 o
DAR I 0
xy P4
This completes the rearrangements of terms in the DP
substitution expression Eq. (23). The first two terms of

Eq. (51) will be described later. Terms 3 and 4 are
straightforward to rearrange as terms of W

3.4 Rearrangement of IP substitution term 5

Term 5 of Eq. (51) requires a straightforward evaluation
of summation ranges and Js to rearrange the right-hand
side of Eq. (53),
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and the IP summation as follows,
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and the Js can be evaluated to give
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oy Zd s l_ ;ZW(@@, SO NACE cxi)]
Ys, l_ Z Za(8 - 0) + Y Zu(8 - })]

>

x>y a

Yyl Ya-a - ol -n)| -
ax Yy

(74)

The most convenient means of handling the in-
equalities in the summations of terms 1 and 4 of Eq. (74)
is to define a modified Kronecker delta,

/o
o0,=1 p>gq
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for use when the contribution to W® is defined (see
Sect. 4).

3.5 Derivative of SOCC energy integral component

The remaining rearrangements are concerned mainly
with the derivation of T'S terms. It is convenient to gather
all terms involving the SOCC eigenvalue integral
component (Eq. 9) together and symmetrize the overall
term with respect to the x, y indices as follows,

1 ;
32 brly) g 42 (xylay) (76)
X,y

e+ 1]

where

L=Y S (ixlip) [Copixlp) — iplx)]/ (DZP) 2

ds.
£ (calph) Copralpb) ~ (plpa)]/ (D2) (77)

ab p

P3O0 [vkza)® /(D) + Gzt (07)7]

Note that in the absence of the exchange integral
terms of Eq. (9), Eq (77) would have the same form
(apart from two sign changes) as P2 (see Sect.4). Sub-
stituting Eq. (16) for the integral derlvatwe in Eq. (77)
and recognizing the symmetry amongst the four SOCC
labels leads to

4ley|xy +4Z (pylxy)

The first term of Eq. (78) yields a contribution to I'S
as follows,

1 ,
ZZ(xpry)/ [Xx +Xy]
x.y

= i Z (wv|ia)’

1,V,4,0

= % Z (w|Aa)

1V, 4,0

(tetu) - (78

Zc;wcvvcixcay (/Cx + 7y)
X,y

(o) (o)

+ (Z nyc)x> (Z vaCoyXy>

1 S
[ /(;m ZXWTP;U'L

, (79)

in which the following back-transformed densities were
used,

ocC
P,EF prcupcvp P;Pv +P,3v )
P
Lo = CueCunty - (81)
X
In Eq. (80), the ROHF density is separated into its
doubly occupied (D) and SOCC (S) components. The
second term of Eq. (78) yields various contributions to

L and W®, and the following terms for SOCC DP
responses,

Z yZ(pZIyZ (1, + 1]
Z yz (xzlyz) [, + 2] +

B ; (Sy _xy‘sf)

(80)

> b2 [ty + ]+

z



where Eq. (26) is employed for the case x =y. For
Eq. (82) to become singular in the case x # y, the MOs
would need to be degenerate. However, if x, y belong to
the different irreducible representations the numerator
will vanish faster than the denominator [25]. We now
return to the DP and IP substitutions to deduce further
terms of I'>.

3.6 Separable two-particle term
from the DP substitution

The first term of Eq. (23) is the integral derivative of a

Fock matrix element; the right-hand side of Eq. (40)
gives rise to a term of the form

Z P‘] Pq
= Zh Z Zﬂ 2pglrr)’

The two-particle term of Eq. (83) can be rearranged
as follows,

> (o) (Z CupCogF} )(Zﬁc;r )
wy,Ae

() (10

Identifying back-transformed two-index quantities
with density matrix elements leads to

—(prigr)’] . (83)

(84)

= > (wl0) [2PRPIF — PIPEF] (85)
IRV
where

Zcﬂpc PY . (86)

In practice, Eq. (85) should reflect any four-label
symmetries that are exploited in the implementation
chosen.

3.7 Separable two-particle term from the IP substitution
The first two terms of Eq. (51) involve the general open-

shell derivative Fock matrix elements (Eq. 52),
Eq. (53) gives rise to a term of the form

1P
ZZP‘I (g)q B gz1yp)
P9
1P hv + Z [O‘pr(pqu) +ﬁpr(pr|qr) ]

P4 ~Jalpg — > [etar(palrr)' +B - (prigr)’]
(87)
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which yields one- and two-electron terms,

P P
= Zzpq (fp _fq)h;q + zzpq
P P4
x (Z [ (otr — o0r) (pglrr)’+ (ﬁpr -

I

Byr) (prlqr)y]) :
(88)

The one-electron term of Eq. (88) defines the IP block
of the response density,

fq) Pg>

Note that care must be taken to form Eq. (89) im-
mediately prior to back-transformation (Eq. 58) and
contraction with core-Hamiltonian derivative integrals
in Eq. (59). The two-electron term of Eq. (88) may be
rearranged as follows,

PY) = (f, for p,g =1P . (89)

occ

Z CipCrgZpg Z CMCG' Opr — O‘ql)
> (wlio)y |

BsV52s0

occ

+ Z CupCigZpq Z Cvrcar pr qr)
(90)

Considering, for brevity, just the Coulomb density
term in Eq. (90),

occ

Z CupCrqZpg Z CirCor (ctpr —

Eq. (91) appears nonseparable unless it is subdivided
into summations over unique shells,

ocq,) , (91)

- Z C,uwale Z C/j CUJ Qyj — %j )

)Cl

+ Z Cm Cvini Z C/lycay (chy - OCz'y)
X0 y
c.d.
+ ) CuaCiZai Y, CriCoj(ttay — i)
a,i J
+ Z C/m CviZai Z C/cha'x(“ax - O‘ix)
a,i X
c.d.
+ Z C,ua CvxZax Z C).icoi(ocai - O‘xi)
a.x i
+ Z CuanxZax Z C)vycay (O‘ay - O‘ch) 5 (92)
ax y

which allows the coupling factors in brackets to be
evaluated from Eq. (50),
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o

(Z CWCV,sz> (2;: CiCo )
Apees)(ee)

y

g ($oc)
_ (Z c,vaiZa,) (Z C;xCox>

X

d.
_ (Z C,vame> (Z C/:iCoi>
— % (Z CﬂacvxZax> (Z Ci-yC“J’> !
ax y

By defining the following back-transformed densities
over IP shells,

S
0 = Z CuCriZi.

VD
Z/Av = Z C;vaiZaiv
a,i

o

(93)

(94)

ZIYVS = Z C;tanxZax )

ax

substituting into Eq. (93), and repeating the process for
the exchange-coupling terms, the two-electron term of
Eq. (88) may be written in the following separable form
in the AO basis,

_ 7zSppD _lZSDPS _7VDpD _ZVDPS _ZVSP)J

L D w * o

1 1
__ZVSPS +2Z§/DPD _|_ZV;LDP\2

25w
1 VD pS 1 VS pD 1 VS pS
+ 3L P AR ZE PR A3 LR, (95)

which can be rearranged to give
~(ZP+223P + 235 ) PET

I IZSD+ZVD+IZVS PHF+1

27 nA 2 Vo 2

This contribution to the overall separable two -parti-
cle density requires three new matrices of order n”, where
n is the number of basis functions, which is prmClpally a
storage issue since

(5 -ZP)Ps . (96)

1P
SD VD VS
Z/u = Z CHPCW]ZP‘] Z;tv +Z +Z :

iy uy
P

©7)

This completes the rearrangements made to simplify
the evaluation of the gradient expression (Eq. 56).

4 Gradient expression

In thls sectlon the density-like quantities P®, W, T'S,
and T™, and the Lagrangian, L, are Summarlzed n terms
of the matrix elements of their various shell-shell blocks.
The CORE-CORE response density is null (P,E;) =0).

DOCC-CORE response density:

@_ 1
E’”_— (e —sm)‘ .
2;%(mp|1q)[ Cpy(ipljq) — (iqlip)l/ D}}
x +2Z;§ (mal|pb)|2(ia|pb) — (ib|pa)] / DS}
+2§Za)(MXIya)(ix\ya>/D,-‘y”+§a(mx|xa)(iylya)/D?

DOCC-DOCC response density:
— Z Z (iplkq)[Cpq (jplkg) — (jglkp)]/ DYDY

- ZZ (ia|pb)[2

ab p

=¥ (ixba)(jxlya)/
Xy a

33 Gilva) Gilya) /DD

x.y,a

(jalpb) — (jblpa)]/ Dy D5

)/ DD

ey

SOCC-SOCC response density (see Eq. 77):

Py ZZ ixljp) [C
- 22<xa|pb>[

ab p

+ 30 | ixka)iviza)/ DD

w(ivlip) — Gipliy)] /DYDY

Cyp(ya‘pb) - (yb|pa)] /DZ;D;;

— (iz|xa) (iz|ya) / D Dif

Y bl 2]

z



VIRT-VIRT response density:

(ipljb))/ D DY

P} = Z Z (ialjp)[2
+¥ Z (palge) [Cry(pblac) — (pelgb)] /DD
+ Z >~ ixba) ixb) /DD

+- Z (ix|xa) (iy|yb) /DID? .
1xy

(ibljp) —

The IP, or off-diagonal response density, is given by
Eq. (89).
CORE—-CORE energy-weighted response density:

o _ 1920
W =—§prq qumn_ ZpqTpg
p>q

+ 5:,1,1 Zz‘cm (6’;; - an)
P
+D Zan (8 = Lan) = D ZpaThy
a P4
DOCC-CORE energy-weighted response density:

2) (2 im
im E qum - lm § :qu‘t

P4 p>q

+ ZZYl(éinx - me) + ZZai(éina - Cam) .

X

DOCC-DOCC energy-weighted response density:

e = _zi (iplkq) [Cog Uiplkq) — (iglkp) | / DY
k pyq

. Z;dZ (ialpb) 2 jalpb)  (jblpa)} /D2

_ZZ (ix|ya) (jx|ya) /D ——Ey; ix|xa)(jy|ya) /DS
Z Gpaij — Py Z 20Ty

sz,(é’,x CXJ)+ZZm(éja )

p>q
_ ij
E ququ] .

p>q

+9;;
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SOCC-SOCC energy-weighted response density:

ZZ (ixLip)[2
- ZZ (xa|pb)[C

ab p

_ ZZ [(ix|za)(iy|2a)/Dzy

i

——Z ix|ya)(iz|za) /D¢ ——Z Gpgy —

lZCl

(ivlip) — (iplin)]/ DY}

\w(valpb) — (yblpa)] /DI

+ (izfva) izlya) /D5

xv gy

-, sz, (&=0) =D Zu (80— L)
+ Zzpq Tpq xy Zzquff; xy Z (xz|xz) [ + 12 -
p>q p>q z

VIRT-VIRT energy-weighted response density:

ZZ ialjp)[2

-3 2 (palge) [ Gy (pblge) — (pelqb)) /D

[2(ibjp) — (ipljb)) /DY’

- Z Z (ix|ya) (ix|yb) / D}y
——Z (ix|xa) (iy|yb) /D Pab &p .
ix,y

SOCC-CORE and SOCC-DOCC energy-weighted
response density:

e =-2%" Z (irljp) [Cyp(ix|jp) — (ipljx)]/D;}

d.s.
—23 > (ralph)[Cy(xalpb) — (xblpa)}/ Dy,

ab p

2 Z 2 ((irlya) ixlya) /D +(iylra) (iixa) /D
- Z (ix|ra) +

i,y,a

(ir|xa)](iylya)/Df

Z P‘W 22 Z 2y pq
r>q

ZZXI fx zr + ZZax g)rca ar
- Z FZ|XZ [/(x + Xz] )

where r indexes a CORE or a DOCC MO.
VIRT-CORE, VIRT-DOCC, and VIRT-SOCC
energy-weighted response density:
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:—222 (irljp)[2(ialjp) — (iplja)l/Dif

-2 Z Z (prlgb) [Cpq(palgb) — (pblga)] /D;Z

2 Z Z (ix|yr) (ix|ya) / D}y
— > (ix|xr) (iylya) /Df — 2ZP ab Ebr = Z
~ pP>q

- Z Zai (ifi - (zr Z Z gxr )

where r indexes a CORE, DOCC, or SOCC MO.
SOCC—CORE Lagrangian elements:

Low= ZZZ (imljp) [Cyp(ix|jp) — (ipljx)] /DY

_222 (mal|pb) [Cyy(xalpb) — (xblpa)]/Dﬁﬁ

ab p

- 222 [(im|ya) (ix|ya)/D;§f + (iy|ma) (iy|xa)/Dl§a]

—Z (ix|ma) + (im|xa))(iy|ya)/ D}

iy.a

22 qum+2z e =2y P
y
VIRT-CORE Lagrangian elements:

Lam =2 Z Z (imjp)[2(ialjp) — (iplja)l /D’

_222 (pmlgb) [Coy( palgb) — (pblga)] /D%

—ZZZ (ix|ym)(ix|ya) / Dy
— > (ixlem) (iylya) /D

ix,y
DP 5
+Z quam +2Z im '_2235!7)8”’” )
P4 b
SOCC-DOCC Lagrangian elements:
Lg=2 Z Z (xpliq) [Cpq(ipliq) - (iglip)] /Dif!
-2 Z Z (ikLjp) [Cop(Rxljp) — (kplix)] /DE

+2) Z (xalpb)[2(ialpb) — (ib|pa)]/ D}y

ab p

) Z Z za|pb wp(xalpb) — (xb|pa)} /D)(i[l;

ab p

+2 Z Z (xy|za)(iy|za)/ D}’
-2 Z Z [(ijlya)(jXIya Dxa+(]y|la) (Jylxa)/DJ{f}
- Z ]x\la

+ Z (xylya)(iz|za)/ Df

Yiz,a

. 1 DP
- Z (lZ|XZ) [/Cx + Xz] + EZPP(‘?)GWW
z Pq

c.d.
+ 22&;2)8”‘ — 2ZPX(§)8},, .
J y

(ijxa)](iv|ya)/ D}

VIRT-DOCC Lagrangian clements:

m—ZZZ (paljq) [Cpipliq) — (iqljp)] / DI}
7

—ZZZ ik|jp)[2(kaljp) — (kplja)] / DS}

JkP

+ZZZ ab|pe)[2(ib|pc) (lc|pb)]/DZf

e 7
—ZZZ ip|gb) [Cpq(palgb) — (pblqa)] / Dy
+2ZZ (xalyb)(ix|yb) / D}
—222 iy|jx) (jx|ya) /D3
+ Zy(m] eb) (iylyb) /D) = (ix|jx) (ivlya) /D5

x.y,b Iy
DP ed ,
+3 PG +2Y P02 Py
rq J b
VIRT-SOCC Lagrangian elements:
Lu=2 Z Z (ialjp) [ Cpixljp) — (ipljx)] /D;F
-2 Z Z (ix|jp)2(ialjp) — (iplja)] /DY
+ ZZ Z (ablpc) [Cyp(xb|pc) — (xc|pb)] /Df;

N 22 Z (xplgb) [Cpq(palgb) — (pb|qa)]/DZ;’
b pg



23> [(ia\yb)(ixlyb) /D (iy|ab) (iy|xb) /Di{f}
=23 > (izhy) (izbva) /D

+Y_ [(ix|ab) + (ialxb)|(ivlyb) /D]

i,y,b

=Y (ivhy)(izlza)/D

Ly,z

DP
+ %Z P Gy +2 PPty
Pq y
—23 P e = > (olva) [+ 1] -
b y

Separable two-particle density:

s =2p2piF

e uy

(2) pHF S
PM P\fo' + 4/(M4Pv0'
S VS SD S
+47H'P +§ (Zy Z )1)1’0'
(ZSD + 2ZVD ZVS)P

v v

+ (8250 +Z3P +1235)PF

Nonseparable two-particle density:

d.s. s.wv.

T = 22 CuwCuCurCally
pg TS

where

ab __ . .
T3 = 22 ialjb) —

(ix|ja)l/ Dff,

(iblja)] /D,

T = [2(ialjx) —
T3 = [2(ix|ja) — (ialjx)] / D},
T;’;y [(ix|jy) — (iy|jx)]/D,§»y,

Ty = 2(ix|ya) /D) + (ix|xa)(iy|ya) /DS,
T2 = [2(ialxb) — (iblxa)] /DY,
— (xblia)|/ DS}

X1

Ty = [(xalyb) — (xblya)] /D5y,
=15 =T4=T¢=TE=0 .

5 Conclusion

While second-order UMP theory admits a relatively
simple explicit derivative expression [26, 27], the situa-
tion for RMP [28-30], ROMP, OPT1, OPT2, and ZAPT
is evidently more complex. These gradients give rise to a
number of issues not found in the closed-shell MP2 case.
Firstly, the energy expressions contain several terms.
One may attempt to take the derivative of each term
separately then combine the results; however, this would
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be a tedious exercise and is likely to produce many more
terms than necessary. Secondly, the DP and IP responses
have quite different forms for their substitutions (com-
paring Egs. 23 and 51, their counterparts in the closed-
shell case differ by only one term [31]). Of course, there
are also four classes of MO to consider if frozen cores
are included.

However, it has been shown that when these factors
are taken into account the results are quite tractable.
Indeed, though the gradient expression given in this
work involves many more terms than its closed-shell
counterpart, the new terms are all associated with sum-
mations over SOCC indices, which are likely to be short.
It is not expected, therefore, that the evaluation of the
ZAPT2 gradient will be significantly more expensive
than comparable closed-shell MP2 calculations.
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